

SM Transparency Catalog ▶ Carboline ▶ Firefilm Series

Firefilm Series Firefilm III & IV

Carboline's Firefilm line of Intumescent Fire Resistive Materials offer superior fire protection for commercial and light industrial projects. These Firefilm systems allow architects to create unique exposed steel designs with unsurpassed aesthetics, durability and performance where fire resistance ratings are required. The Firefilm range of intumescent coatings provides high end architectural finishes and gives project planners options to develop specifications to meet all building types, project requirements and conditions.

Performance dashboard

Features & functionality

Durable finish – Provides a hard, impact and abrasion resistant surface.

Decorative Finish – Gives a smooth, decorative finish. Compatible topcoats available in a wide range of colors.

Best-in-class finish level and dozens of designs with Firefilm III

Fast recoat and ease of application with Firefilm IV

Visit Carboline for more product information Firefilm III Firefilm IV

Environment & materials

Improved by:

UL/ULC, ITS and ICC-ES Listed – designs for many types of steel sections. Up to 3 hour fire ratings for both interior general purpose and interior conditioned space application

Advanced fiber free formulation - dust free surface Declare, Red List Free

Certifications & rating systems:

Environmental Product Declaration (EPD) LEED v4 VOC Compliant

ASTM E84 - UL 723 - Class A SCAQMD Rule 1113 Compliant

Tested to meet (CDPH) Standard Method v1.2

MasterFormat® 07 81 23

Firefilm Series Guide Specs

For spec help, contact us or call 281.414.9710

See LCA, interpretation & rating systems

SM Transparency Report (EPD)™

VERIFICATION

LCA

Transparency Report (EPD)

3rd-party verified

3rd-party reviewed

Validity: 20230213 - 20280212 Decl #: CAR-20230213-001

This environmental product declaration (EPD) was externally verified, according to NSF PCR for **Architectural Coatings, and ISO** 14025:2006, by Jack Geibig, President, Ecoform.

Ecoform, LLC 11903 Black Road, Knoxville, TN 37932

(865) 850-1883

SUMMARY Reference PCR

Regions; system boundaries North America; Cradle to grave

Functional unit / reference service life: 1 m² of covered and protected substrate; 60 years

LCIA methodology: TRACI 2.1

LCA software; LCI database

SimaPro Developer 9.4 Ecolnvent 3.8, US-EI 2.2, and ELCD databases.

LCA conducted by: Sustainable Minds

Public LCA:

Carboline Global Inc. 2150 Schuetz Rd. St. Louis, MO 63146

Contact us

314-644-1000

Firefilm Series

Life cycle assessment

Scope and summary

○ Cradle to gate ○ Cradle to gate with options **②** Cradle to grave

SM Transparency Catalog ▶ Carboline ▶ Firefilm Series

LCA results & interpretation

Product description Carboline's Firefilm series includes two products: Firefilm III and Firefilm IV.

The impacts are presented for these two products covered in this report. Firefilm products are water-based thin-film, intumescent coating products for structural steel. They allow the designer to express the structure as an artform in buildings where fire resistance ratings are required. In a fire, they soften and expand to form thick merinque-like layers, which insulate the structure and protect the steel from fire. **Functional unit**

The functional unit is **one square meter** of covered and protected substrate for a period of 60 years (the assumed average lifetime of a building).

Application and maintenance: Since Firefilm products fall under the primer designation and are applied to interior architecture, a 5-year market-based

lifetime was adopted in the LCA models. One initial coating application and

11 recoats are required because the average life span of a building is assumed to be 60 years. The preferred waste management option for leftover paint is 100% landfilled. **Colorant:** Colorants are not added to the fireproofing coatings themselves, neither at the point of sale nor at the point of application as defined in the application manuals and are therefore not included in the scope of this

Manufacturing data **Time coverage:** The data covers annual manufacturing data for the 2021 calendar year from Carboline's manufacturing plant in Lake Charles, Louisiana. This period of time was chosen in order to capture a representative picture of businesses activities at Carboline.

Pigment

Spumific

1.50E+01

1.20E+01

study.

Material composition greater than 1% by weight **MATERIAL** AVG % WT. 25-35% **Acid catalyst** 10-20% Resin 10-20% **Deionized water**

Geographical coverage: The geographical coverage for this study is based

on United States system boundaries for all processes and products.

Carbon donor **Additives** Total impacts by life cycle stages [mPts/per func unit] 1.80E+01

LIFE CYCLE STAGE

Product stage

Design and construction

Use and maintenance

End of life 4.80E-01 9.00E+00 A variation of 10 to 20% | A variation greater than 20% 6.00E+00 3.00E+00 0.00E+00 **LCA results**

All life cycle stages The product stage (Stage 1) accounts for the highest contribution to

What's causing the greatest impacts

impacts, primarily because of the impacts associated with raw material

manufacturing. The design & construction stage (Stage 2) is the next highest contributor for all impact categories except for global warming, smog, eutrophication, and carcinogenics. The use and maintenance stage (Stage 3) accounts for a minium contribution to almost all impact categories due to the low energy required for spray application. **Product stage** The raw material manufacturing phase (1-1) is the largest contributor for all

Firefilm products. Raw material manufacturing accounts for over 45% of the

impact in each category for Firefilm III and accounts for over 60% of the impact in each category for Firefilm IV. **Design and construction** The design and construction stage (Stage 2) is the next highest contributor for most of the impact categories. This stage accounts for ~24% of ozone

impact categories. This holds true for the LCA results of each of Carboline's

contributions to transportation are caused by the use of truck and trailer

transportation. Use and maintenance It's worth noting that the VOC emissions released in the drying phase (phase 3-2) affect the variability in potential smog formation impacts. Different from the results of Firefilm IV, phase 3-2 is the second largest

depletion for Firefilm III and ~16% of ozone depletion for Firefilm IV. The

is that Firefilm III emits about five times as much as VOCs that Firefilm III emits during the drying process. End of life For both Firefilm III and VI, the second highest impacts for the global warming, eutrophication, and carcinogenics categories come from the endof-life stage (Stage 4).

A sensitivity analysis was performed to check the robustness of the results

contributor to smog formation for Firefilm III. The reason for this difference

when the mass of specified raw materials was changed by +/-20%. These raw materials were chosen based on a combination of relatively higher

10-20%

5-10%

5-10%

5-10%

MPTS/FUNC. UNIT

PRODUCT STAGE

1-1 Raw material

manufacturing

PRODUCT STAGE

7.28E-06

2.44E-06

8.41E-06

4.06E-02

3.18E+00

1.21E+02

4.02E-01

6.08E-02

3.80E-06

7.75E+01/td>

0

1.44E+01

6.03E-01

2.02E-02

Sensitivity analysis

contributions to the results. Global warming potential was evaluated for sensitivity since Carboline is interested in the potential CO2-equivalent emissions of its products. The resulting variation in the total life cycle impacts is less than 10%, implying

that the system is not sensitive to this assumed value.

manufacturing, raw material sourcing, and logistics to improve sustainability efforts. One of Carboline's most impactful contributions is the creation of the SLOB Program (slow moving and obsolete inventory). To reduce hazardous waste generation, the SLOB Program was designed to provide optics to Carboline's Inventory Analytics Team

to review inventory close to expiration. Preventative measures are

taken to rework inventory or sell this material at a discounted rate, with

the ultimate goal of preventing little to zero waste of unused material.

Carboline is committed to finding new and efficient alternatives in

As an RPM company, Carboline is dedicated to working towards reaching the goals that have been set through RPM's Building a Better World Program. These goals include reducing energy consumption, landfill contributions, and water reuse/conservation opportunities. See how we make it greener

USE AND MAINTENANCE

3-1 Coating application

USE AND MAINTENANCE

2.61E-09

1.22E-10

2.06E-09

1.46E-05

9.02E-01

8.43E-02

2.33E-04

1.95E-05

5.99E-02

2.45E-09

1.14E-10

END OF LIFE

disposal site

END OF LIFE

2.73E-08

7.18E-08

1.27E-07

1.54E-04

2.67E-02

2.43E-01

1.86E-03

1.33E-02

1.76E+01

2.62E-08

6.89E-08

½product

1 product

1 product

1.5 product

.5 points

.75 points

1 point

4-1 Transportation to

LIFE CYCLE STAGE

Excluded* (MND)

LIFE CYCLE STAGE

Ozone depletion

Impact category

Carcinogenics

Impact category

Fossil fuel depletion

Non-carcinogenics

Respiratory effects

Information modules: Included (X)

No stages are excluded	1-2 Transportation of raw materials to plants	2-2 Transportation to point of sale	3-2 Emissions from drying	4-2 End-of-life management
	1-3 Coating manufacturing	2-3 Transportation to application site	3-3 Necessary maintenance and repaints	
		aboline boline		
SM Single Score Learn about SM Single Score	e results			
Impacts of the coating used for covering one square meter of substrate	9.91E+00 mPts	6.03E-01 mPts	2.02E-02 mPts	4.80E-01 mPts
Materials or processes contributing >20% to total impacts in each life cycle stage	Energy used for raw material extraction (electricity and fuels).	Trucks and trailer transportation (fuel consumption).	Energy and electricity consumed for coating application and recoats.	Landfill of the waste coating.

DESIGN AND CONSTRUCTION

2-1 Transportation to

distribution center

Ecological damage

kg CFC-11 eq

Unit

CTU_h

CTU_h

kg PM_{2.5} eq

kg O₃ eq

MJ, LHV

Unit

Ecological damage						
Impact category	Unit					
Acidification	kg SO ₂ eq	•	3.32E-01	1.74E-02	2.49E-04	1.93E-03
Eutrophication	kg N eq	?	5.53E-02	3.62E-03	2.08E-05	1.39E-02
Global warming (embodied carbon)	kg CO ₂ eq	?	6.56E+01	1.00E+01	6.39E-02	1.83E+01

2.38E-06

9.18E-09

1.40E-06

3.50E-03

2.23E-01

2.12E+01

CONSTRUCTION

1.49E-02

3.10E-03

8.56E+00

2.04E-06

7.86E-09

STAGE 2 DESIGN AND CONSTRUCTION

Smog Additional environmental information

Ecological damage

Impact category

Acidification

Eutrophication

Global warming

Impact category

Carcinogenics

References

PCRs

LCA Background Report

(embodied carbon)

Human health damage

Ecotoxicity	CTU _e	8.31E+01	2.84E+01	4.82E-03	4.30E+00						
See the additional content required by the NSF PCR for architectural coatings on page 4 of the Transparency Report PDF .											
Firefilm IV: TRACI v2.	Firefilm IV: TRACI v2.1 results per functional unit										
LIFE CYCLE STAGE		STAGE 1 PRODUCT STAGE	STAGE 2 DESIGN AND	STAGE 3 USE AND MAINTENANCE	STAGE 4 END OF LIFE						

Ozone depletion kg CFC-11 eq 1.06E-05 Human health damage

Unit

CTU_h

Unit

kg SO, eq

kg N eq

kg CO₂ eq

Non-carcinogenics	CTU _h	?	1.05E-05	1.20E-06	1.93E-09	1.22E-07
Respiratory effects	kg PM _{2.5} eq	?	4.97E-02	3.00E-03	1.37E-05	1.48E-04
Smog	kg O ₃ eq	?	3.61E+00	1.91E-01	1.50E-01	2.57E-02
Additional environm	ental informat	ion				
Additional environm	ental informat	ion				
		ion	1.46E+02	1.81E+01	7.90E-02	2.33E-01
Impact category	Unit		1.46E+02 1.34E+02	1.81E+01 2.43E+01	7.90E-02 4.51E-03	2.33E-01 4.13E+00

PCR for Architectural Coatings: NAICS 325510 Valid through Feb. 29, 2023. PCR review conducted by Thomas P. Gloria

ecoinvent (US -EI 2.2) database; TRACI 2.1

ISO 14025, "Sustainability in buildings and civil engineering works -- Core rules for environmental product declarations of construction products and services"

(Industrial Ecology Consultants), Ph. D; Mr. Bill Stough (Sustainable Research

Carboline Intumescent fireproofing coating LCA Background Report (public

version), Carboline 2022; SimaPro Analyst 9.4; Ecoinvent 3.4 and US

content required by the NSF PCR.

impacts may vary on a case-to-case basis.

SM Transparency Report (EPD)™

LCA

Validity: 20230213 - 20280212 Decl #: CAR-20230213-001

Transparency Report (EPD)

VERIFICATION

3rd-party reviewed

3rd-party verified

declaration (EPD) was externally verified, according to NSF PCR for Architectural Coatings, and ISO 14025:2006, by Jack Geibig, President, Ecoform. **Ecoform, LLC** 11903 Black Road,

This environmental product

✓ Product-specific Type III EPD **BREEAM New Construction 2018**

Rating systems

performance.

Mat 02 - Environmental impacts from construction products **Environmental Product Declarations (EPD)**

▼ Product-specific EPD

✓ Product-specific Type III EPD LEED BD+C: New Construction | v4.1 - LEED v4.1 Building product disclosure and optimization

LEED BD+C: New Construction | v4 - LEED v4

Building product disclosure and optimization

Environmental product declarations

Environmental product declarations

Industry-wide (generic) EPD

Industry-wide (generic) EPD

The intent is to reward project teams for selecting products from

manufacturers who have verified improved life-cycle environmental

Industry-average EPD	
Multi-product specific EPD	

	Carboline Global In
	2150 Schuetz Rd.
atings: NAICS	St. Louis, MO 63146

314-644-1000 Contact us

Regions; system boundaries North America; Cradle to grave Functional unit / reference service life:

LCA software; LCI database SimaPro Developer 9.4 Ecolnvent 3.8, US-El 2.2, and ELCD

Public LCA:

NSF Program Operator Instructions

Group); Dr. Michael Overcash (Environmental Clarity).

SM Transparency Reports (TR) are ISO 14025 Type III environmental declarations (EPD) that enable purchasers and users to compare the potential environmental performance of products on a life cycle basis. Environmental declarations from different programs (ISO 14025) may not be comparable. In order to support comparative assertions, this EPD meets all comparability

Download PDF SM Transparency Report, which includes the additional EPD

requirements stated in ISO 14025:2006. However, differences in certain assumptions, data quality, and variability between LCA data sets may still exist. As such, caution should be exercised when evaluating EPDs from different manufacturers, as the EPD results may not be entirely comparable. Any EPD comparison must be carried out at the building level per ISO 21930

guidelines. The results of this EPD reflect an average performance by the product and its actual

SUMMARY

Reference PCR

1 m² of covered and protected substrate; 60 years LCIA methodology: TRACI 2.1

databases. LCA conducted by: Sustainable Minds

(865) 850-1883

© 2022 | The SM Transparency Report [EPD]™ Program is operated by Sustainable Minds® (www.sustainableminds.com) | Privacy policy

Knoxville, TN 37932

SM Transparency Catalog ► Carboline ► Firefilm Series

How we make it greener

Firefilm Series

See LCA results by life cycle stage

RAW MATERIAL ACQUISITION

Collapse all

Carboline is dedicated to improving raw material sustainability efforts. These initiatives include researching alternative methods to acquire raw materials, while being conscience of their environmental impact and opting for suppliers who place emphasis on sustainable manufacturing techniques/renewable energy processes.

TRANSPORTATION

In an effort to reduce multiple long distance LTL shipments, Carboline has initiated pooling orders from local warehousing sites vs. shipping individual orders from multiple manufacturing and warehousing locations throughout the country.

MANUFACTURING

Carboline is always exploring solutions to reduce energy usage throughout the production process. Some of these initiatives include -

- Installing VFD drives to reduce electrical usage for mixing units
- Upgrading air driers with the intent of generating better air, which could result in using less air in the production process
- Researching solar installation at Carboline's Dayton, Nevada manufacturing site

END OF LIFE

Carboline fireproofing products provide long-term protection to the structures to which they are applied and were designed to outlive the expected lifespan of a building. Essentially, the only waste generated is at the time of demolition or if any repairs need to be made to the building.

SM Transparency Report (EPD)™

LCA

VERIFICATION

3rd-party reviewed

Transparency Report (EPD)

3rd-party verified

Validity: 20230213 - 20280212 Decl #: CAR-20230213-001

This environmental product declaration (EPD) was externally verified, according to NSF PCR for **Architectural Coatings, and ISO** 14025:2006, by Jack Geibig, President, Ecoform.

Ecoform, LLC 11903 Black Road, Knoxville, TN 37932

(865) 850-1883

SUMMARY

Reference PCR

Regions; system boundaries

North America; Cradle to grave

Functional unit / reference service life: 1 m² of covered and protected substrate; 60

LCIA methodology: TRACI 2.1

LCA software; LCI database SimaPro Developer 9.4 Ecolnvent 3.8, US-EI 2.2, and ELCD

LCA conducted by: Sustainable Minds

Public LCA:

databases.

Carboline Global Inc. 2150 Schuetz Rd. St. Louis, MO 63146

Contact us

314-644-1000

Data

Additional EPD content required by: **NSF PCR: Architectural Coatings**

Background This product-specific declaration was created by collecting life cycle data for the Firefilm Series covering 1 m² of substrate for a period of 60 years (the assumed average lifetime of a building). Databases adopted in the model include ecoinvent v3, US-EI 2.2, and ELCD databases.

Allocation The allocation methods used were examined according to the allocation rules in the NSF PCR for Architectural Coatings. The only manufacturing input that needed allocation was electricity since there is only one single meter that includes the production of multiple Carboline IFRM products. The allocation of electricity was based on the percentage of production for individual products divided by total site production output. In addition, there is no co-product produced in the manufacturing process.

Cut-off criteria A minimum of 95% of the total mass, energy, and environmental

relevance for the system were captured. The total of neglected input flows per module does not exceed 5% of energy usage, mass, and environmental impacts. The cut-off rules do not apply to hazardous and toxic properties, which must be listed even when the given process unit is under the cut-off criterion. No known flows are deliberately excluded from this declaration; therefore, these criteria have been met. No biogenic carbon enters the product system. Quality All primary data were collected for one year to ensure representativeness of annual business activities and post-consumer contents. Except for overseas

transportation, secondary datasets for the US were used since Carboline products are expected to be applied in the US. The overall quality of the data used in this study is considered to be good and representative of the described systems. Major system boundary exclusions: • Capital goods & infrastructure; maintenance and operation of support equipment;

• Human labor and employee transport;

• Manufacture & transport of packaging materials not associated with final product;

- Building operational energy and water use not associated with final product. Major assumptions and limitations:
- Material input and transportation distances are averages and do not reflect changes
- in material efficiency and supplier locations.

• Proxy materials were used when matching secondary data sets were not identified.

- $\bullet\,$ Generic data sets used for material inputs, transport, and waste processing are considered good quality, but actual impacts from material suppliers, transport carriers, and local waste processing may vary.
- endpoints, the exceeding of thresholds, safety margins or risks. Relevant technical properties PRODUCT

• LCA results are relative expressions and do not predict impacts on category

Density 1.45 1.50 kg/L Dry Film Thickness 30 28 mils

(DFT) / coat

	Parameter	Unit	Stage 1 - Product sta	~~			nge 2 - sign and	constru	ctio	
Fi	irefilm III: LO	CIA re	sults, res	ource (ıse, outp	ut aı	nd wa	ste flo	ws	, (i
	Packaging volui	me	18.9	18	.9		L			
	Packaging for fi products	inished	Steel pail	St	eel pail					R
	functional unit		8.94	8.	58		kg			V

Scenarios and additional technical information

Firefilm Series

Lorry, 16-32 ton

Graco Mark V Airless

kg

Total

Design and construction [Stage 2] Vehicle type

Average packaging weight for 1 kg coating		
Firefilm I	0.049	kg
Firefilm IV	0.048	
Distance from manufacturer to distribution center		
Firefilm I	I 2685.4*	km
Firefilm IV	/ 2308.9*	km
Distance from distribution center to point of sale	804.5	km
Distance from point of sale to application site	0	km
*Average transportation distances between the manufacturing centers were provided by Carboline based on sales data.	plant and the	distributi

Use and maintenance [Stage 3] Application scrap assumed

Spray equipment assumed

Electricity consumption	2.09	kWh
Sprayer flow rate	1	gpm
Waste materials at the application site before waste processing (product scrap and packaging waste) Product scrap	0.1	kg
Packaging waste recycling - Firefilm III	0	kg
Packaging waste recycling - Firefilm IV		kg
Output materials from on-site waste processing	0	kg
Biogenic carbon contained in packaging	0	kg CO ₂
VOC emissions from drying - Firefilm III (EPA Method 24)	2	g/L
VOC emissions from drying - Firefilm IV (EPA Method 24)	4	g/L
Necessary maintenance and repaints		
Product life for functional unit	60	years
Coating type/environment	Indoor	
Market-based lifetime	5	years

Initial coating application 1 time Maintenance recoat 11 times No colorants are added End of life [Stage 4] Assumptions for Manual deconstruction, sent for landfill by truck

Collected with mixed construction

waste

Use and maintenance

3-2

scenario development

End-of-life products

(landfill)

2-3

		Reuse		0	kg			
	Recovery	Recycling		0	kg			
		Landfill		0	kg			
	Waste transport (land	fill)		11.27	km			
	Removals of biogenic	carbon (excluding packagi	0	kg CO ₂				
)WS	s, and carbon e	missions & remova	ls per fund	ctional u	ınit			
Stage 3 - Stage 4 -								

3-3

End of life

LCIA results	(per m²	covered	and prote	ected sub	strate fo	r a period	of 60 ye	ars)					
Ozone depletion	kg CFC-11 eq	5.12E-06	1.89E-06	2.67E-07	1.83E-06	5.49E-07	0	2.18E-10	0	2.40E-09	7.69E-09	1.96E-08	9.70E-06
Global warming	kg CO ₂ eq	5.13E+01	7.99E+00	6.33E+00	7.69E+00	2.31E+00	0	5.32E-03	0	5.86E-02	3.23E-02	1.83E+01	9.40E+01
Smog	kg O ₃ eq	2.50E+00	4.53E-01	2.19E-01	1.72E-01	5.14E-02	0	1.78E-04	8.99E-01	1.96E-03	7.20E-04	2.60E-02	4.33E+00
Acidification	kg SO ₂ eq	2.82E-01	2.97E-02	2.02E-02	1.34E-02	4.01E-03	0	2.08E-05	0	2.28E-04	5.61E-05	1.88E-03	3.51E-01
Eutrophication	kg N eq	4.95E-02	3.37E-03	2.37E-03	2.79E-03	8.35E-04	0	1.73E-06	0	1.91E-05	1.17E-05	1.38E-02	7.28E-02
Carcinogenics	CTUh	2.12E-06	7.14E-09	3.14E-07	7.06E-09	2.12E-09	0	1.02E-11	0	1.12E-10	2.96E-11	7.17E-08	2.52E-06
Non-carcinogenics	CTUh	7.14E-06	1.04E-06	2.19E-07	1.08E-06	3.24E-07	0	1.71E-10	0	1.88E-09	4.53E-09	1.23E-07	9.94E-06
Respiratory effects	kg PM _{2.5} eq	3.34E-02	3.59E-03	3.65E-03	2.70E-03	8.08E-04	0	1.22E-06	0	1.34E-05	1.13E-05	1.42E-04	4.43E-02
Ecotoxicity	CTUe	5.60E+01	2.09E+01	6.12E+00	2.18E+01	6.55E+00	0	4.01E-04	0	4.41E-03	9.16E-02	4.20E+00	1.16E+02
Fossil fuel depletion	MJ surplus	9.75E+01	1.68E+01	6.77E+00	1.63E+01	4.89E+00	0	7.02E-03	0	7.73E-02	6.84E-02	1.75E-01	1.43E+02
Resource use	e indica	tors				1		1		1			
Renewable primary energy used as energy carrier (fuel)	MJ, LHV	3.31E+01	1.07E-01	1.60E+00	1.04E-01	3.11E-02	0	5.68E-03	0	6.25E-02	4.36E-04	1.38E-03	3.50E+01
Renewable primary resources with energy content used as material	MJ, LHV	1.54E+01	3.90E-02	2.29E+00	3.79E-02	1.14E-02	0	1.75E-03	0	1.93E-02	1.59E-04	4.72E-04	1.78E+01
Total use of renewable primary resources with energy content	MJ, LHV	4.84E+01	1.46E-01	3.89E+00	1.42E-01	4.25E-02	0	7.43E-03	0	8.18E-02	5.95E-04	1.86E-03	5.27E+01
Non-renewable primary resources used as an energy carrier (fuel)	MJ, LHV	9.33E+02	1.12E+02	9.64E+01	1.09E+02	3.26E+01	0	9.58E-02	0	1.05E+00	4.57E-01	1.15E+00	1.29E+03
Non-renewable primary resources with energy content used as material	MJ, LHV	2.92E-01	3.41E-04	4.38E-03	3.25E-04	9.75E-05	0	8.16E-10	0	8.98E-09	1.37E-06	6.54E-06	2.97E-01
Total use of non-renewable primary resources with energy content	MJ, LHV	9.33E+02	1.12E+02	9.64E+01	1.09E+02	3.26E+01	0	9.58E-02	0	1.05E+00	4.57E-01	1.15E+00	1.29E+03
Hazardous waste disposed	kg	0	0	1.58E+00	0	0	0	0	0	0	0	0	1.58E+00
Non-hazardous waste disposed	kg	0	0	1.68E-01	0	0	0	0	0	0	0	0	1.68E-01
Hydro/wind power	MJ, LHV	0	0	7.51E-01	0	0	0	0	0	0	0	0	7.51E-01
Fossil energy	MJ, LHV	0	0	1.48E+01	0	0	0	0	0	0	0	0	1.48E+01
Bio-energy	MJ, LHV	0	0	4.72E-01	0	0	0	0	0	0	0	0	4.72E-01
Nuclear- energy	MJ, LHV	0	0	5.15E+00	0	0	0	0	0	0	0	0	5.15E+00
Other-energy	MJ, LHV	0	0	2.58E-01	0	0	0	0	0	0	0	0	2.58E-01
Renewable secondary fuels	MJ, LHV	0	0	0	0	0	0	0	0	0	0	0	o
Non-renewable secondary fuels	MJ, LHV	0	0	0	0	0	0	0	0	0	0	0	0
Recycled materials	kg	0	0	0	0	0	0	0	0	0	0	0	0
Recovered energy	MJ, LHV	0	0	0	0	0	0	0	0	0	0	0	0
Secondary materials	kg	0	0	0	0	0	0	0	0	0	0	0	0
Use of net fresh water resources	m ³	1.18E+02	1.81E+00	2.98E+00	1.76E+00	5.27E-01	0	1.78E-04	0	1.95E-03	7.38E-03	2.31E-02	1.25E+02
Output flows	and w	aste cate	gory indic	ators									
High-level radioactive waste, conditioned, to final repository	kg	8.67E-03	3.90E-05	4.98E-04	3.75E-05	1.12E-05	0	3.71E-07	0	4.08E-06	1.57E-07	5.92E-07	9.26E-03
Intermediate- and low-level radioactive waste, conditioned, to final repository	kg	3.23E-05	1.66E-05	4.06E-06	1.61E-05	4.83E-06	0	4.09E-09	0	4.50E-08	6.76E-08	1.72E-07	7.42E-05
Components for													

Exported energy MJ, LHV 0 0

5.66E-02

kg N eq

Eutrophication

2.30E-03

1.99E-03

2.30E-03

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Components for re-use

Materials for energy recovery

Materials for recycling

kg

kg

Carbon emissions and removals													
Biogenic carbon removal from product	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Biogenic carbon emission from product	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Biogenic carbon removal from packaging	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Biogenic carbon emission from packaging	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Biogenic carbon emission from combustion of waste from renewable sources used in production processes	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Calcination carbon emissions	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Carbonation carbon removals	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Carbon emissions from combustion of waste from non-renewable sources used in production processes	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	o
Firefilm IV: I	LCIA re	sults, res	source us	se, outpu	ıt and wa	ste flow	s, and ca	ırbon em	issions 8	& remova	als per fu	nctional	unit
Parameter	Unit	Stage 1 - Product sta	nge		Stage 2 - Design and	l constructio	n	Stage 3 - Stage 4 - End of life			Total		
	Ome	1-1	1-2	1-3	2-1	2-2	2-3	3-1	3-2	3-3	4-1	4-2	
LCIA results	(per m²	covered	and prote	ected sub	strate fo	r a period	of 60 ye	ars)					
Ozone depletion	kg CFC-11 eq	8.93E-06	1.44E-06	2.47E-07	1.51E-06	5.27E-07	0	2.04E-10	0	2.25E-09	7.38E-09	1.88E-08	1.27E-05
Global warming	kg CO ₂ eq	6.59E+01	6.04E+00	5.55E+00	6.35E+00	2.21E+00	0	4.99E-03	0	5.49E-02	3.10E-02	1.75E+01	1.04E+02
Smog	kg O ₃ eq	3.21E+00	2.01E-01	2.02E-01	1.42E-01	4.94E-02	0	1.67E-04	1.48E-01	1.84E-03	6.91E-04	2.50E-02	3.98E+00
Acidification	kg SO ₂ eq	3.69E-01	1.43E-02	1.86E-02	1.10E-02	3.85E-03	0	1.94E-05	0	2.14E-04	5.38E-05	1.80E-03	4.19E-01

9.52E-12 0 2.84E-11 6.89E-08 3.88E-06 3.51E-06 5.50E-09 2.94E-07 5.83E-09 2.03E-09 0 1.05E-10 Carcinogenics CTUh 9.44E-06 8.29E-07 2.01E-07 8.92E-07 3.11E-07 1.61E-10 1.77E-09 4.35E-09 1.18E-07 1.18E-05 Non-carcinogenics CTUh

0

1.62E-06

0

1.79E-05

3.82E-06

4.22E-08

1.51E-07

6.49E-08

5.69E-07

1.66E-07

1.04E-02

7.21E-05

1.12E-05

1.33E-02

7.73E-02

8.01E-04

Non-carcinogenics	CTOIL	9.44E-06	8.29E-07	2.01E-07	8.92E-07	3.HE-07	U	1.01E-1U	U	1.77E-09	4.35E-09	1.18E-U/	1.18E-05
Respiratory effects	kg PM _{2.5} eq	4.40E-02	2.31E-03	3.41E-03	2.22E-03	7.75E-04	0	1.14E-06	0	1.25E-05	1.09E-05	1.37E-04	5.29E-02
Ecotoxicity	CTUe	1.12E+02	1.67E+01	5.68E+00	1.80E+01	6.28E+00	0	3.76E-04	0	4.14E-03	8.79E-02	4.04E+00	1.63E+02
Fossil fuel depletion	MJ surplus	1.27E+02	1.28E+01	6.22E+00	1.35E+01	4.69E+00	0	6.58E-03	0	7.24E-02	6.57E-02	1.68E-01	1.65E+02
Resource use	esource use indicators												
Renewable primary energy used as energy carrier (fuel)	MJ, LHV	3.61E+01	8.14E-02	1.47E+00	8.57E-02	2.99E-02	0	5.32E-03	0	5.86E-02	4.18E-04	1.33E-03	3.78E+01
Renewable primary resources with energy content used as material	MJ, LHV	2.61E+01	2.96E-02	2.11E+00	3.13E-02	1.09E-02	0	1.64E-03	0	1.81E-02	1.52E-04	4.53E-04	2.83E+01
Total use of renewable primary resources with energy content	MJ, LHV	6.21E+01	1.11E-O1	3.58E+00	1.17E-01	4.07E-02	0	6.96E-03	0	7.66E-02	5.70E-04	1.78E-03	6.61E+01
Non-renewable primary resources used as an energy carrier (fuel)	MJ, LHV	1.19E+03	8.53E+01	8.86E+01	8.98E+01	3.13E+01	0	8.98E-02	0	9.87E-01	4.38E-01	1.10E+00	1.48E+03
Non-renewable primary resources with energy content used as material	MJ, LHV	9.71E-01	2.56E-04	4.10E-03	2.69E-04	9.36E-05	0	7.65E-10	0	8.41E-09	1.31E-06	6.28E-06	9.76E-01
Total use of non-renewable primary resources with energy content	MJ, LHV	1.19E+03	8.53E+01	8.86E+01	8.98E+01	3.13E+01	0	8.98E-02	0	9.87E-01	4.38E-01	1.10E+00	1.49E+03
Hazardous waste disposed	kg	0	0	1.48E+00	0	0	0	0	0	0	0	0	1.48E+00
Non-hazardous waste disposed	kg	0	0	1.56E-01	0	0	0	0	0	0	0	0	1.56E-01
Hydro/wind power	MJ, LHV	0	0	7.02E-01	0	0	0	0	0	0	0	0	7.02E-01
Fossil energy	MJ, LHV	0	0	1.39E+01	0	0	0	0	0	0	0	0	1.39E+01
Bio-energy	MJ, LHV	0	0	4.41E-01	0	0	0	0	0	0	0	0	4.41E-01
Nuclear- energy	MJ, LHV	0	0	4.82E+00	0	0	0	0	0	0	0	0	4.82E+00
Other-energy	MJ, LHV	0	0	2.41E-01	0	0	0	0	0	0	0	0	2.41E-01
Renewable secondary fuels	MJ, LHV	0	0	0	0	0	0	0	0	0	0	0	0
Non-renewable secondary fuels	MJ, LHV	0	0	0	0	0	0	0	0	0	0	0	0
Recycled materials	kg	0	0	0	0	0	0	0	0	0	0	0	0
Recovered energy	MJ, LHV	0	0	0	0	0	0	0	0	0	0	0	0
Secondary materials	kg	0	0	0	0	0	0	0	0	0	0	0	0
Use of net fresh water resources	m ³	1.32E+02	1.32E+00	2.50E+00	1.39E+00	4.85E-01	0	1.66E-04	0	1.83E-03	6.79E-03	2.44E-02	1.37E+02

	Intermediate- and low-level radioactive waste, conditioned, to final repository	kg	3.75E-05	1.26E-05	3.73E-0
	Components for re-use	kg	0	0	0

Output flows and waste category indicators

9.83E-03

2.94E-05

4.60E-04

3.73E-06

3.09E-05

1.33E-05

Components for re-use	kg	0	0	0	0	0	0	0	0	0	0	0	0
Materials for recycling	kg	0	0	0	0	0	0	0	0	0	0	0	0
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0	0	0	0
Exported energy	MJ, LHV	0	0	0	0	0	0	0	0	0	0	0	0
Carbon emis Biogenic carbon removal from product	kg CO ₂	nd remov	vals 0	0	0	0	0	0	0	0	0	0	0
Biogenic carbon emission from product	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	o
Biogenic carbon removal from packaging	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Biogenic carbon emission from	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0

1.08E-05

4.63E-06

0

0

3.48E-07

3.83E-09

0

Biogenic carbon removal from product	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Biogenic carbon emission from product	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Biogenic carbon removal from packaging	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Biogenic carbon emission from packaging	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Biogenic carbon emission from combustion of waste from renewable sources used in production processes	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Calcination carbon emissions	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Carbonation carbon removals	kg CO ₂	0	0	0	0	0	0	0	0	0	0	0	0
Carbon emissions from combustion of waste from non-renewable sources used in production processes	kg CO ₂	0	O	0	0	0	0	0	0	0	0	0	o